Definition 2.3.1. Inner Product and Magnitude.
Let \(\vb{x}\) and \(\vb{y}\) be vectors in \(\RR^n\text{.}\) The inner product of \(\vb{x}\) and \(\vb{y}\) is the real scalar \(\dotprod{\vb{x},\vb{y}}\) given by
\begin{equation*}
\dotprod{\vb{x},\vb{y}} = \vb{y}^{T}\vb{x}.
\end{equation*}
The magnitude of \(\vb{x}\) is the nonnegative real number \(\norm{\vb{x}}\) given by
\begin{equation*}
\norm{\vb{x}} = \sqrt{\dotprod{\vb{x},\vb{x}}}.
\end{equation*}