Skip to main content ☰ Contents Index Calc
You! < Prev ^ Up Next > \(\require{physics}\newcommand{\RR}{\mathbb{R}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\CC}{\mathbb{C}}
\renewcommand{\th}{\text{th}}
\newcommand{\xx}{\mathbf{x}}
\newcommand{\xxp}{\mathbf{x}^\prime}
\newcommand{\yy}{\mathbf{y}}
\newcommand{\yyp}{\mathbf{y}^\prime}
\newcommand{\zz}{\mathbf{z}}
\newcommand{\zzp}{\mathbf{z}^\prime}
\newcommand{\ii}{\mathbf{i}}
\newcommand{\jj}{\mathbf{j}}
\newcommand{\kk}{\mathbf{k}}
\newcommand{\uu}{\mathbf{u}}
\newcommand{\uup}{\mathbf{u}^\prime}
\newcommand{\vv}{\mathbf{v}}
\newcommand{\vvp}{\mathbf{v}^\prime}
\newcommand{\bb}{\mathbf{b}}
\newcommand{\ee}{\mathbf{e}}
\newcommand{\nn}{\mathbf{n}}
\newcommand{\rr}{\mathbf{r}}
\newcommand{\rrp}{\mathbf{r}^\prime}
\newcommand{\ff}{\mathbf{f}}
\newcommand{\FF}{\mathbf{F}}
\renewcommand{\SS}{\mathbf{S}}
\newcommand{\TT}{\mathbf{T}}
\newcommand{\col}[1]{\operatorname{col}{#1}}
\newcommand{\dotprod}[1]{\left\langle #1 \right\rangle}
\newcommand{\nul}[1]{\operatorname{null}{#1}}
\newcommand{\spn}[1]{\operatorname{span}{#1}}
\newcommand{\rowop}[2][]{\overset{#2}{\underset{#1}{\sim}}}
\newcommand{\Sum}[2]{\sum_{#1}^{#2}}
\newcommand{\Int}[2]{\int_{#1}^{#2}}
\newcommand{\limit}[2]{\lim_{#1\to#2}}
\newcommand{\Laplace}[1]{\mathcal{L}\left\{#1\right\}}
\newcommand{\iLaplace}[1]{\mathcal{L}^{-1}\left\{#1\right\}}
\newcommand{\vecm}[1]{\boldsymbol{#1}}
\newcommand{\ivec}[1]{
\renewcommand{\arraystretch}{.8}
\begin{bmatrix}#1\end{bmatrix}
}
\newcommand{\proj}[2]{\operatorname{proj}_{#1} #2}
\newcommand{\del}{\nabla}
\renewcommand{\div}{\grad\cdot}
\newcommand{\divt}{\operatorname{div}}
\newcommand{\curlt}{\operatorname{curl}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter 3 Vector Derivatives
In this chapter we review important concepts relating to vector functions and their derivatives. As in introductory calculus, the derivative may be seen as giving the rate of change of a particular quantity. However, the move to higher dimensions involved with vector functions allows for multiple interpretations of the rate of change of a vector function, and therefore several different notions of the derivative. These interpretations are based on combining the following three concepts:
We will begin by examining the inner and cross products.